
Cross Over Design 

Cross over design is commonly used in various type of research for its unique feature of accounting 

for within subject variability. For studies with short length of treatment time, illness that will not be 

altered its baseline characteristics after treatment, or endpoints that are individual-dependent and 

subjective, etc., a cross-over study design will be a good choice since it usually requires less patients and 

more cost efficient. However, a cross-over study design will not be appropriate or feasible if the study 

length is long or the testing procedures will change the baseline of the illness (such as cancer research).    

A cross over design allows each subject serves as his/her own control such that the within subject 

variability can be accounted for and therefore reduces the random error. In some cases, a cross over 

design provides a more sensitive testing because it renders a more “precise” estimate of variability than a 

parallel study design will.  For “precise” or “precision”, we define “precision” as the number of 

experimental units needed for the  estimate of variance from a parallel study deign will have the same 

variance as from a cross-over study design. To demonstrate it, let the variance from a cross-over study be 
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more study subjects in order to have the same level of variance from a cross-over design (note that the 

more study subjects a study has, the lower the variance likely to be since variance=
𝑠𝑢𝑚 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟

𝑛
).   

However, a cross over study requires careful planning and execution. A cross-over study with 

statistically significant carry-over effect will be difficulty to draw definite conclusions regarding the 

testing effect.  Careful planning and execution of the study may reduce or avoid the carry-over effect by 

placing   adequate length of wash-out period or utilizing statistically valid testing sequences. Also, a less 

complicated cross-over study may reduce the chance of having carry-over effect, study subjects drop out, 

or withdraw (therefore less missing data). 

In this article we will first discuss the statistical model and analyses for a 2*2 cross-over design, 

followed by a bioequivalence study design as an example.  Lastly we will briefly discuss the statistical 

analyses for a higher-order 2*2 cross-over design.   

Statistical Model for a 2*2 Cross Over Study – Continuous Endpoint 

A 2 (treatment)*2 (period) cross-over study design indicates a study with 2 treatments and 2 periods 

for each study subject. For a 2*2 cross-over design where the endpoints of interest are continuous, the 

statistical model can be expressed as : 

𝜇𝑖𝑗𝑘 = 𝜇 + 𝑆𝑢𝑏𝑘 + 𝑃𝑒𝑟𝑖𝑜𝑑𝑗+𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝜀𝑖𝑗𝑘 

     where  k=1,2,…ni = number of study subjects in each testing group; 

  j=1,2 period; 



  i=1,2 treatment; 

One big difference in analyzing a cross-over study is that we should test for period effect using the 

Type I sum of square error before we proceed to testing for treatment effect. If the period effect is 

statistically significant, the treatment effect at the 2nd period will not be feasible for interpretation since 

the results from the 2nd period consist of the residual effect from the 1st period and the treatment effect 

from the current  period. Therefore, the type I sum of square error should be assessed first to ensure no 

period effect prior to proceeding to assessing the treatment effect. If there was no evidence of  period 

effect, the treatment effect can be tested using the random error from the within-subject random error. 

Collecting data prior to the beginning of the 2nd period can be informative since it can be used to assess 

whether the baseline at the beginning of the 2nd period is comparable to that of the 1st period.  

A 2*2 cross-over design can be analyzed using SAS®  PROC GLM procedure with SUBJECT, 

SEQUENCE, TREATMENT, and PERIOD in the model. If the period effect is not statistically  

significant, we can proceed to estimate the least squared mean treatment effect. However, if the period 

effect is statistically significant, one should consider assess the treatment effect using the 1st period data 

only.   

For example, a pharmaceutical company is planning a study testing the  treatment for acute asthma 

on dilating the bronchial muscle when study subjects have an acute asthma episode.  The efficacy 

endpoint is measured by the Forced Expiratory  Volume  (FEV). The example data and SAS codes are 

listed as following 

data example; 

input subject seq $ run_in P1 washout P2; 
cards; 

1 AB 1.09 1.28 1.24 2.33  

2 AB 1.38 1.6 1.9 2.21 

… 

9 BA 1.74 3.06 1.54 1.38 
10 BA 2.41 2.68 2.13 2.10 

.. 

; 

proc glm; 

class seq subject period trt; 
model fev1=seq subject(seq) period trt; 

TEST H = SEQ E = SUBject(SEQ) / HTYPE=1 ETYPE=1; 

lsmeans trt/pdiff; 

run; 

 

Note that the SEQ (sequence) should be tested using the SUBJECT error term as each subject is 

nested in each sequence.  The ANOVA table for the analyses is displayed below : 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 18 15.23153546 0.84619641 6.61 0.0003 

Error 15 1.91985278 0.12799019   

Corrected Total 33 17.15138824    

 



Source DF Type I SS  Mean Square F Value Pr > F 

seq 1 1.60796879 1.60796879 12.56 0.0029 

subject(seq) 15 10.93591944 0.72906130 5.70 0.0009 

period 1 0.07718824 0.07718824 0.60 0.4495 

trt 1 2.61045899 2.61045899 20.40 0.0004 

 

Source DF Type III SS  Mean Square F Value Pr > F 

seq 1 1.60796879 1.60796879 12.56 0.0029 

subject(seq) 15 10.93591944 0.72906130 5.70 0.0009 

period 1 0.03323546 0.03323546 0.26 0.6178 

trt 1 2.61045899 2.61045899 20.40 0.0004 

 

Tests of Hypotheses Using the Type I MS for subject(seq) as an Error Term 

Source DF Type I SS  Mean Square F Value Pr > F 

seq 1 1.60796879 1.60796879 2.21 0.1582 

 

The same analyses can be  accomplished by using PROC MIXED model with PERIOD and 

TREATMENT as the fixed effects and the SUBJECT as the random effect.  

 
proc mixed; 
class seq subject period trt; 
model fev1=   period trt; 
RANDOM SUBJECT(SEQ); 
LSMEANS TRT / PDIFF CL E; 
run; 

Type 3 Tests of Fixed Effects 

Effect Num DF Den DF F Value Pr > F 

period 1 15 0.26 0.6178 

trt 1 15 20.40 0.0004 

 
Statistical Model for a 2*2 Cross Over Study – Binary Endpoint 

In a 2*2 cross-over design, if the endpoint of interest is a binary endpoint, several analysis methods 

can be considered, such as McNemar test or Mainland-Gart test. Although each method has its pros and 

cons, both methods ignore some data that have the same responses from each period or treatment. In order 

to maximize the use of the collected data, the repeated measure logistics regression is recommended as 

the foremost statistical method.  



For example, a study is planned to test the safety profile of 2 compounds for the adverse event 

occurrence. Each subject received compound A/B at each period. The data input and the SAS codes used 

for analyses for the example are listed below: 

data binary; 
input pat seq $ trtA trtB; 

cards; 

1 AB 1 0 

2 AB 1 0 

… 
10 AB 0 1 

11 BA 1 0  

… 

; 

run; 
 

proc genmod desc; 

      class seq pat trt(ref="A")  ; 

      model outcome=trt   / dist=bin link=logit ; 

      repeated subject=pat(seq) / corr=cs corrw; 
   run; 

 
The safety profile difference between A and B can be compared by the logit (which can be back 

transform exp(0.819)) of the 2 treatments: 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 

Standard 

Error 95% Confidence Limits Z Pr > |Z| 

Intercept  -0.4055 0.4564 -1.3001 0.4891 -0.89 0.3744 

trt A 0.8109 0.8640 -0.8825 2.5044 0.94 0.3480 

trt B 0.0000 0.0000 0.0000 0.0000 . . 

 
 
Bioequivalence Study 
 

A bioequivalence study is commonly performed in pharmaceutical research when it is necessary to 

demonstrate the equivalence of 2 conditions of interest. For example, the liquid form of a compound vs. a 

tablet form, total dose of difference combinations of dosage and the number of tablets (2*400mg vs. 

1*800mg), a new generic form of compound vs. an existing compound with similar therapeutic purpose, 

or the metabolism profile of a pharmaceutical agent with or without meals.  

When a bioequivalence study is being planned, a 2 (tested group vs. reference group) *2 (periods)  

cross-over design will be considered as the study design of choice because of its unique feature of 

controlling the within subject variability.  In the US, per the FDA guideline, the 20% rule is used to 

determine the bioequivalence of two compounds of interest.  For a test compound, it can be claimed to be  

bioequivalent  to a reference compound if the difference in AUC or Cmax between 2 compounds is within 

20% of the reference group.   



 
Two approaches can be used to demonstrate the equivalence:  
 

1. Confidence Interval Approach: 

 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝜇𝑡, 𝜇𝑅) = 𝜇𝑡 −  𝜇𝑅  ≤  ± 20% of  𝜇𝑅; or  

 80%<=ratio ( 𝜇𝑡 , 𝜇𝑅 ) <= 120%; 
 

2. Interval Hypotheses Testing 

 T is not worse than R by ∆  and T is not superior to R by ∆; 

→  𝐻0 : 𝜇𝑡-𝜇𝑟 ≤ 𝜃𝐿     or   𝜇𝑡-𝜇𝑟 ≥ 𝜃𝑈; 
               𝐻𝑎 :   𝜃𝐿  <  𝜇𝑡-𝜇𝑟 < 𝜃𝑈   

 
One can obtain the estimate of the variance and the estimated mean difference using the method 

described above.   

 
The following example illustrates the calculation.  A manufacture is planning  a study to demonstrate 

its generic compound being bioequivalent to the branded compound on the market. Each of the 7 

volunteer subjects received 2 compounds, test compound and the branded compound in each of the 2 

periods. The area under the curve (AUC) was used as the endpoint to demonstrate the equivalence. The 

example data and analyses are shown below. 

 
data BE; 

input seq $ subj Period1  Period2 ; 

cards; 

RT 1 75 73 

RT 2 96 93 

.. 

TR 8 74 37 

TR 9 86 51 

.. 

; 
run; 

proc glm; 

class seq subj period trt; 

model AUC1=seq subj(seq) period trt; 

lsmeans trt; 

run; 

 
The partial results that are relevant to the calculation from the SAS output are listed below. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 15 10718.25000 714.55000 4.83 0.0045 

Error 12 1773.85714 147.82143   

Corrected Total 27 12492.10714    

 



trt AUC1 LSMEAN 

R 84.0714286 

T 89.5714286 

 
As the ANOVA table shows, the MSE (estimate of variance)  is 147.82143. Based on the 20% rule, 

using the 90% confidence interval approach,  

90% CI for (𝑌𝑇 - 𝑌𝑅 ) =(L1, U1) 
  = (89.57 - 84.07) ± t0.05,12 *MSE 

  = 5.5 ± 1.77*√147.82 
  =(-16.02, 27.02   ); 

The 20% limit based on the reference group (R)= 20% of  𝑌𝑅 =0.2* 84.07=16.81; so the equivalence 

limit = (-16.81, 16.81 ). The upper bound of the 90% CI exceeds the upper limit of 16.81. Therefore the T 

and R are not bioequivalent.  

 
We can also use the ratio of the 2 means to assess the equivalence. The bioequivalence can be 

established if the 90% CI for the ratio is within (80%, 120%).   

The  90% CI for 
𝜇𝑇  

𝜇𝑅
 =(L2, U2) 

          =[ ( 
𝐿1

𝑌𝑅
 +1)*100%, (

𝑈1

𝑌𝑅
 +1)*100%]  

                              = (80.9%, 132%) 
 

Since the upper bound of the confidence exceeds the upper limit of 120%,  T and R can not be 

claimed to be bioequivalent based on the 20%. 

 
Higher-order designs for  2*2 cross-over design 
 

A high-order design is a 2 treatment cross-over with more than 2 periods or sequences. The main 

reason that  a higher-order design is needed is that the carry-over effect from a single 2*2 cross-over 

replicate  is aliased with the treatment by period effect. In order to separate the carry-over and the 

interaction effects, a 2-treatment cross over design with more than 1 replicate is required. The goal of an 

optimal higher-order design is to select a study design that will render a minimum random error. 

Following are some examples of  higher-order designs for a 2-treatment cross over study. 

 
Design   Period 

 

1 Sequence 1 2 3 4 
1 A A   

2 B B   
3 A B   

4 B A   
2 1 A B B  

2 B A A  



3 1 A A B B 
2 B B A A 

3 A B B A 
4 B A A B 

4 1 A B B A 
2 B A A B 

  
Any of the designs above will provide an optimal outcome that the random error will be minimized 

and the carry-over effect can be separated from the treatment and period interaction with adequate degree 

of freedoms in the model. 

 
We will illustrate the statistical model and analyses using the Design 1, which is also called 

Balaam’s design. Balaam’s design requires t2 experiment units.  The treatment effect under the Balaam’s 

design can also be adjusted for carry-over effect if the carry-over is statistically significant.  Denote the 

estimated means for each period and sequence as follows: 

 
    Period 
Sequence  1   2 

 1  A Y.11
̅̅ ̅̅ ̅      A Y.21

̅̅ ̅̅ ̅   
          2    B Y.12

̅̅ ̅̅ ̅    B Y.22
̅̅ ̅̅ ̅ 

 3  A Y.13
̅̅ ̅̅ ̅   B Y.23

̅̅ ̅̅ ̅ 
 4  B Y.24

̅̅ ̅̅ ̅    A Y.24
̅̅ ̅̅ ̅  

 
The difference in the estimated treatment mean adjusted for carry-over becomes: 
 

     =  
1

2
{(𝑌.23

̅̅ ̅̅̅ -𝑌.13
̅̅ ̅̅̅) - (𝑌.24

̅̅ ̅̅̅ -𝑌.14
̅̅ ̅̅̅) - (𝑌.22

̅̅ ̅̅̅ -𝑌.12
̅̅ ̅̅̅) + (𝑌.21

̅̅ ̅̅̅ -𝑌.11
̅̅ ̅̅̅)} 

      = 
1

2
 ( (B-A)3 – (A-B)4 –(B-B)2 + (A-A)1 ) 

      = 
1

2
 {(B3+B4) – (A3+A4)}  

 
Note that if the carry-over is not statistically significant (negligible) the terms (B-B)2 + (A-A)1 will 

be close to 0. However, if the carry-over effect is significant the estimated treatment difference will be 

accounted for with the term (B-B)2 + (A-A)1. 

 
For example, a biotechnology company is testing a compound for treating Parkinson’s disease. The 

efficacy endpoint for the study is the quality of life. Since QOL is a subjective measurement and varies 

from person to person, a cross-over design will be a better choice of design for the study because the 

within subject variability can be accounted for and  the random error can be reduced.  The example data 

and the SAS®  codes for the analyses are displayed below: 

 
data  balaam;   
input seq $ Sub baseline P1 P2; 
cards; 
AA 1 14 12.5 14 



AA 2 27 24.25 21.5 
…. 
BB 5 21 21 22.51 
BB 6 11 12.5 15 
…. 
AB 9 9 8.75 9.75  
AB 10 12 10.5 11.75 
…. 
BA 13 23 22 21 
BA 14 15 15 17 
… 
; 
run; 
 
proc glm; 
class seq sub period trt; 
model  QOL1=seq sub(seq) period trt   trt*period/*carry-over effect*/;  
TEST H = SEQ  E = SUB(SEQ ) / HTYPE=1 ETYPE=1; 
LSMEANS TRT trt*period/ PDIFF CL E; 
run; 
 
The partial output for the analyses are displayed below: 
 

Tests of Hypotheses Using the Type I MS for Sub(seq) as an Error Term 

Source DF Type I SS  Mean Square F Value Pr > F 

seq 3 175.3097750 58.4365917 1.20 0.3510 

 

 

Source DF Type III SS  Mean Square F Value Pr > F 

seq 3 179.0085250 59.6695083 50.30 <.0001 

Sub(seq) 12 583.6647250 48.6387271 41.00 <.0001 

period 1 3.2896125 3.2896125 2.77 0.1198 

trt 1 0.8789062 0.8789062 0.74 0.4050 

period*trt 1 14.0812562 14.0812562 11.87 0.0043 

 
The period and treatment interaction term is significant, which indicates the treatment responses 

differed from period to period.  One can estimate the treatment difference based on the least squared mean 

(LSM) at each period: 



period trt QOL1 LSMEAN 

LSMEAN 

Number 

P1 A 18.6256250 1 

P1 B 17.2181250 2 

P2 A 17.3906250 3 

P2 B 19.7356250 4 

  

Least Squares Means for Effect period*trt 

i j 

Difference 

Between 

Means 

95% Confidence Limits for 

LSMean(i)-LSMean(j) 

1 2 1.407500 -0.256314 3.071314 

1 3 1.235000 -0.205905 2.675905 

1 4 -1.110000 -2.550905 0.330905 

2 3 -0.172500 -1.613405 1.268405 

2 4 -2.517500 -3.958405 -1.076595 

3 4 -2.345000 -4.008814 -0.681186 

 
For a 2*2 higher-order design, there is no clear recommendation as to which design should be used. 

It depends on the features of the study. For example, if the length of treatment is long then one may 

choose to have more sequences, instead of more periods, since it will prolong the study time. Once the 

study design is chosen, the statistical analyses for 2*2 cross-over higher-order designs are similar to those 

described above. 

 
Conclusions 
 

A cross-over design is a more desirable design when the within subject variability is high. With 

careful planning and execution, a cross-over study design is more efficient. It allows each subject to serve 

as her/his own control and assesses the difference in each period/treatment that is due to different external 

causes, instead of internal sources (subjects themselves). The statistical models and analyses are similar 

among  most of the designs, with some designs allowing carry-over effect to be accounted for. Therefore, 

a cross-over study design is recommended for studies where within subject variability is of concern.    


